Подключение лдс с перегоревшими нитями накала. Устройство и схема включения люминесцентной лампы

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Схема подключения люминесцентной лампы ЭМПРА

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод 4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

(или как мы еще привыкли их называть Лампа дневного света ) зажигаются при помощи разряда, создаваемого внутри колбы.
если кому интересно узнать об устройстве такой лампы- о их преимуществах и недостатках то можете заглянуть в .

Для того чтобы получить высоковольтный разряд применяются специальные приспособления- балластные дроссели управляемые стартером.
Работает это примерно так: внутри фурнитуры лампы размещается дроссель и конденсатор которые образуют колебательный контур. Последовательно с этим контуров устанавливается стартер- неоновая лампа с небольшим конденсатором. При прохождении тока через неоновую лампу в ней возникает электрический пробой, сопротивление лампы падает практически до нуля, но она практически сразу-же начинает разряжаться через конденсатор. Таким образом стартер хаотично открывается-закрывается и в дросселе возникают хаотичные колебания.
За счет ЭДС самоиндукции эти колебания могут иметь амплитуду до 1000 Вольт, они-то и служат источником высоковольтных импульсов зажигающих лампу.

Данная конструкция применяется в быту уже много лет и имеет целый ряд недостатков- неопределенное время включения, износ нитей накала ламп и огромный уровень радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. Здесь зачастую нить перегорает.

Более перспективны - без стартерные устройства зажигания , где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы - на них подается напряжение, необходимое для поджига газа в лампе.

Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к "своей" цепи - тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

Недавно посмотрел на целую коробку сгоревших энергосберегающих ламп, в основном с хорошей электроникой, но перегоревшими нитями накала люминисцентной лампы, и подумал – надо куда-то всё это добро применить. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов.

И хотя зажигание с холодными электродами является для более тяжелым режимом, чем включение обычным образом, этот метод позволяет ещё долгое время использовать люминисцентную лампу для освещения. Как известно, зажигание лампы с холодными электродами требует повышенного напряжения до 400...600 В. Реализуется это простым выпрямителем, напряжение выхода которого будет почти в два раза выше входного сетевого 220В. В качестве балласта устанавливается обычная маломощная лампочка накаливания, и хотя использование лампы вместо дросселя снижает экономичность такого светильника, если использовать лампы накаливания на напряжение 127 В и её включить в цепь постоянного тока последовательно с лампой, то будем иметь достаточную яркость.


Диоды любые выпрямительные, на напряжение от 400В и ток 1А, можно и советские коричневые КЦ-шки. Конденсаторы так-же с рабочим напряжением не менее 400В.


Данное устройство работает как удвоитель напряжения, выходное напряжение которого приложено к катоду - аноду ЛДС. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой и напряжение одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30 - 80 Вт, имеющих рабочее напряжение в среднем около 100 В. При таком включении схемы, световой поток лампы накаливания будет составлять примерно четверть от потока ЛДС.


Для люминисцентной лампоы мощностью 40 Вт необходима лампа накаливания 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. А для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания - около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность - 34 % от номинальной.

Лампы дневного света (ЛДС) широко применяются для освещения как больших площадей общественных помещений, так и в качестве бытовых источников света. Популярность люминесцентных ламп обусловлена в большей мере их экономическими характеристиками. По сравнению с лампами накаливания у данного типа ламп высокий КПД, повышенная светоотдача и более долгий срок службы. Однако функциональным недостатком ламп дневного света является необходимость наличия пускового стартера или специального пускорегулирующего устройства (ПРА). Соответственно задача пуска лампы при выходе из строя стартера или при его отсутствии является насущной и актуальной.

Принципиальное отличие ЛДС от лампы накаливания в том, что преобразование электроэнергии в свет происходит благодаря протеканию тока через пары ртути, смешанные с инертным газом в колбе. Ток начинает протекать после пробоя газа высоким напряжением, приложенным к электродам лампы.

  1. Дроссель.
  2. Колба лампы.
  3. Люминесцентный слой.
  4. Контакты стартера.
  5. Электроды стартера.
  6. Корпус стартера.
  7. Биметаллическая пластина.
  8. Нити накала лампы.
  9. Ультрафиолетовое излучение.
  10. Ток разряда.

Образующееся ультрафиолетовое излучение лежит в невидимой для человеческого глаза части спектра. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Меняя состав этого слоя можно получать разные световые оттенки.
Перед непосредственным запуском ЛДС электроды на её концах разогреваются прохождением через них тока или же за счёт энергии тлеющего разряда.
Высокое напряжения пробоя обеспечивает ПРА, который может быть собран по известной традиционной схеме или же иметь более сложную конструкцию.

Принцип действия стартера

На рис. 1 представлено типовое подключение ЛДС со стартером S и дросселем L. К1, К2 – электроды лампы; С1 – косинусный конденсатор, С2 – фильтрующий конденсатор. Обязательным элементом таких схем является дроссель (катушка индуктивности) и стартер (прерыватель). В качестве последнего зачастую используется неоновая лампа с биметаллическими пластинами. Для улучшения низкого коэффициента мощности из-за наличия индуктивности дросселя применяют входной конденсатор (С1 на рис.1).

Рис. 1 Функциональная схема подключения ЛДС

Фазы запуска ЛДС следующие:
1) Разогрев электродов лампы. В этой фазе ток течёт по цепи «Сеть – L – К1 – S – К2 – Сеть». В этом режиме стартер начинает хаотично замыкаться / размыкаться.
2) В момент разрыва цепи стартером S энергия магнитного поля, накопленная в дросселе L, в виде высокого напряжения прикладывается к электродам лампы. Происходит электрический пробой газа внутри лампа.
3) В режиме пробоя сопротивление лампы ниже, чем сопротивление ветви стартера. Поэтому ток течёт по контуру «Сеть – L – К1 – К2 – Сеть». В этой фазе дроссель L выполняет роль реактивного токоограничивающего сопротивления.
Недостатки традиционной схемы пуска ЛДС: звуковой шум, мерцание с частотой 100 Гц, увеличенное время пуска, низкий КПД.

Принцип действия ЭПРА

Электронные ПРА (ЭПРА) используют потенциал современной силовой электроники и являются более сложными, но и более функциональными схемами. Такие устройства позволяют контролировать три фазы запуска и регулировать световой поток. В результате повышается срок службы лампы. Также, из-за питания лампы током более высокой частоты (20÷100 кГц) отсутствует видимое мерцание. Упрощённая схема одной из популярных топологий ЭПРА приведена на рис. 2.

Рис. 2 Упрощённая принципиальная схема ЭПРА
На рис. 2 D1-D4 – выпрямитель сетевого напряжения, С – фильтрующий конденсатор, Т1-Т4 – транзисторный мостовой инвертор с трансформатором Tr. Опционально в ЭПРА могут присутствовать входной фильтр, схема коррекции коэффициента мощности, дополнительные резонансные дроссели и конденсаторы.
Полная принципиальная схема одного из типовых современных ЭПРА приведена на рис 3.

Рис. 3 Схема ЭПРА BIGLUZ
В схеме (рис. 3) присутствуют основные выше названные элементы: мостовой диодный выпрямитель, фильтрующий конденсатор в звене постоянного тока (С4), инвертор в виде двух транзисторов с обвязкой (Q1, R5, R1) и (Q2, R2, R3), дроссель L1, трансформатор с тремя выводами TR1, схема запуска и резонансный контур лампы. Две обмотки трансформатора служат для включения транзисторов, третья обмотка входит в состав резонансного контура ЛДС.

Способы пуска ЛДС без специализированного ПРА

При выходе из строя лампы дневного света возможны две причины:
1) . В таком случае достаточно заменить стартер. Эту же операцию следует провести при появлении мерцания лампы. В таком случае при визуальном осмотре на колбе ЛДС нет характерных затемнений.
2) . Возможно, перегорела одна из нитей электродов. При визуальном осмотре могут быть заметны потемнения на концах колбы. Здесь можно применить известные схемы запуска для продолжения эксплуатации лампы даже с перегоревшими нитями электродов.
Для экстренного запуска лампу дневного света можно подключить без стартера по схеме, приведенной ниже (рис. 4). Здесь роль стартера выполняет пользователь. Контакт S1 замыкается на весь период работы лампы. Кнопка S2 замыкается на 1-2 секунды для зажигания лампы. При размыкании S2 напряжение на ней в момент зажигания будет значительно больше сетевого! Поэтому при работе с такой схемой следует проявлять повышенную осторожность.

Рис. 4 Принципиальная схема запуска ЛДС без стартера
Если требуется быстро зажечь ЛДС со сгоревшими нитями накала, то необходимо собрать схему (рис. 5).

Рис. 5 Принципиальная схема подключения ЛДС со сгоревшей нитью накала
Для дросселя 7-11 Вт и лампы 20 Вт номинал С1 – 1 мкФ с напряжением 630 В. Конденсаторы с меньшим номиналом использовать не стоит.
Автоматические схемы запуска ЛДС без дросселя предполагают использование в качестве ограничителя тока обыкновенной лампы накаливания. Такие схемы, как правило, являются умножителями и питают ЛДС постоянным током, что вызывает ускоренный износ одного из электродов. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов. Типовая схема подключения люминесцентной лампы без дросселя приведена на рис. 6.

Рис. 6. Структурная схема подключения ЛДС без дросселя

Рис. 7 Напряжение на ЛДС подключенной по схеме (рис. 6) до момента пуска
Как видим на рис. 7 напряжение на лампе в момент пуска доходит до уровня 700 В примерно за 25 мс. Вместо лампы накаливания HL1 можно использовать дроссель. Конденсаторы в схеме рис. 6 следует выбирать в пределах 1÷20 мкФ с напряжением не меньше 1000В. Диоды должны быть рассчитаны на обратное напряжение 1000В и ток от 0,5 до 10 А в зависимости от мощности лампы. Для лампы мощностью 40 Вт будет достаточно диодов, рассчитанных на ток 1.
Ещё один вариант схемы запуска показан на рис 8.

Рис. 8 Принципиальная схема умножителя с двумя диодами
Параметры конденсаторов и диодов в схеме на рис. 8 аналогичны схеме на рис. 6.
Один из вариантов использования низковольтного источника питания приведен на рис. 9. На основе такой схемы (рис. 9) можно собрать беспроводную лампу дневного света на аккумуляторе.

Рис. 9 Принципиальная схема подключения ЛДС от низковольтного источника питания
Для вышеприведенной схемы необходимо намотать трансформатор с тремя обмотками на одном сердечнике (кольце). Как правило, первой наматывают первичную обмотку, затем главную вторичную (на схеме обозначена, как III). Для транзистора необходимо предусмотреть охлаждение.

Заключение

При выходе из строя стартера лампы дневного света можно применить экстренный «ручной» запуск или простые схемы питания постоянным током. При использовании схем на основе умножителей напряжения есть возможность запускать лампу без дросселя, используя лампу накаливания. Работая на постоянном токе, отсутствует мерцание и шум ЛДС, однако уменьшается срок службы.
В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением.

Ну конечно насчет "вечной лампы " это громко сказано, но вот "оживить" люминесцентную лампу с перегоревшими нитями накала вполне возможно...

В общем-то все, наверное, уже поняли что речь у нас пойдет не о обычной лампочке накаливания а о газоразрядных (как их еще называли раньше "лампа дневного света"), которая выглядит вот так:

Принцип работы такой лампы: за счет высоковольтного разряда внутри лампы начинает светиться газ (обычно аргон с примесью паров ртути). Для того чтобы зажечь такую лампу требуется довольно высокое напряжение, которое получают за счет специального преобразователя (балласта) находящегося внутри корпуса.

полезные ссылки для общего развития : самостоятельный ремонт энергосберегающих ламп , лампы энергосберегающие- преимущества и недостатки

Стандартные используемые люминесцентные лампы не лишены недостатков: во время их работы прослушивается гудение дросселя, в системе питания имеется стартер, который ненадежен в работе, и самое главное - лампа имеет нить накала, которая может перегореть, из-за чего лампу приходится заменять новой.

Но есть и альтернативный вариант: газ в лампе можно зажечь даже и при оборванных нитях накала- для этого достаточно просто увеличить напряжение на выводах.
Причем при таком варианте использования есть еще и свои преимущества: лампа зажигается практически мгновенно, отсутствует гудение при работе, не нужен стартер.

Чтобы зажечь люминесцентную лампу с оборванными нитями накала (кстати и не обязательно с оборванными...) нам потребуется небольшая схема:

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, СЗ желательно чтобы были слюдяными. Резистор R1 обязательно проволочный, по мощности лампы, указанной в таблице

Мощноcть

лампы, Вт

С1 -С4

мкФ

С2 - СЗ

пФ

Д1 -Д4

Ом

3300

Д226Б

6800

Д226Б

6800

Д205

6800

Д231

Диоды Д2, ДЗ и конденсаторы С1, С4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостейС1, С4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает 600 В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работы лампы Л1, рассчитанной на напряжение 220 В.

Применение диодов Д1, Д4 и конденсаторов С2, СЗ повышает напряжение до 900 В, что обеспечивает надежное зажигание лампы в момент включения. Конденсаторы С2, СЗ одновременно способствуют подавлению радиопомех.
Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.