Измерение напряжения вольтметром. Измерение силы тока: обзор измерительных приборов и краткое руководство к их применению

Напряжений, токов и сопротивлений, едва ли сходу сможет ответить на этот вопрос: что измеряет вольтметр? Поскольку ответ очевиден, если просто прочитать вторую половину заглавия статьи, раскроем чуть подробнее данную тему. В частности, рассмотрим измерение напряжения в быту, характеристики приборов, принцип работы.

Определение

Вольтметр - это измерительное устройство, позволяющее получать значение напряжения или в цепи постоянного или переменного тока. Диапазон прибора может простираться до 1000 В и более. Все зависит от его предназначения. Чтобы лучше понимать, что это такое, рассмотрим определение электродвижущей силы. Поскольку очень часто она путается с напряжением в сети, их следует отделить друг от друга.

ЭДС и напряжение: разница

Итак, ЭДС - характеризующая работу, производимую какими-либо силами неэлектрического характера по перемещению единичного положительного заряда вдоль рассматриваемого контура. В самом обычном случае она показывает способность источника энергии создавать ту или иную разность потенциалов в двух разнесенных точках цепи. Измеряется, как и напряжение, в вольтах. Отличается от него тем, что характеризует источник питания на холостом ходу, то есть без подключения к сети.

Когда в контуре имеется ток, то есть он замкнут, появляется еще одно, более привычное слуху понятие - напряжение. Причем оно может браться как для самого источника питания на его клеммах, так и в любом участке цепи. Измерение напряжения представляет собой выявление разности потенциалов между двумя разнесенными точками. Для источника питания оно обычно несколько меньше электродвижущей силы, когда тот включен в цепь потребления. По сути, и ЭДС, и напряжение - это одно и то же, с различием лишь в том, какой физический процесс порождает появление разности потенциалов между двумя точками, в которых проводится измерение.

Виды вольтметров

Здесь следует выделить два основных вида: переносные и стационарные. Портативный прибор для измерения напряжения можно не только перетаскивать вручную. Обычно он включает функционал для проверки токов и сопротивления в цепи, а также температуры проводников и т.д. Стационарные приборы зачастую конструктивно объединены с самой сетью, в которой осуществляется измерение, например, в электрораспределительных щитах, панелях и т.п.

Что касается классификации по принципу действия, то можно выделить несколько видов электромеханических вольтметров и два типа электронных. Последние - это аналоговые и цифровые. Электромеханические вольтметры используют магнитную преобразовательную систему для получения значений напряжения. Электронные приборы оцифровывают получаемый сигнал при помощи АЦП. Показания вольтметра в зависимости от принципа представления данных показываются либо стрелочным указателем, либо на специальном цифровом табло.

Еще одна классификация - по назначению. Она позволяет разделить приборы на измерители постоянного и переменного тока, а также фазочувствительные, импульсные и универсальные. Для последних доступна практически вся гамма сигналов, напряжение которых необходимо узнать.

Основные технические характеристики

Зависят от предназначения прибора. К примеру, вольтметр постоянного тока обычно имеет несколько диапазонов измерения, поэтому их число будет одной из важнейших технических характеристик. Кроме того, практически все приборы имеют определенное входное сопротивление, зависящее, кстати, от того, в каких пределах находится напряжение исследуемого участка цепи.

Еще важными характеристиками являются, конечно же, погрешности, а также разрешение шкалы либо минимальный шаг показаний, если речь о цифровом вольтметре. Если пользователю достался универсальный прибор для измерения напряжения, к вышеперечисленным могут добавляться пределы величин, с которыми он способен работать, например, токов, сопротивлений, температур, а также диапазоны, погрешности и частоты для переменных сигналов.

Принцип работы

Распространенные в последнее время в быту цифровые вольтметры имеют большое количество электроники под крышкой. Это связано с преобразованием аналогового сигнала, получаемого на входе прибора, в цифровую форму с использованием АЦП. Кому действительно интересно, можно ознакомиться с большим количеством литературы по теме. Такой вольтметр, цена которого колеблется в пределах нескольких сотен рублей, конечно, не претендует на богатый выбор возможностей и огромную точность, однако вполне способен измерить напряжение на клеммах автомобильного аккумулятора или в сети 220 В.

Подключение в цепь

Вольтметр в цепи всегда подключается параллельно нагрузке либо источнику питания, если нужно измерить его ЭДС или напряжение на клеммах. Именно поэтому существуют такие жесткие требования к входному сопротивлению прибора, поскольку подобное его подсоединение подразумевает появление дополнительной проводимости в цепи.

Ни в коем случае не следует подключать вольтметр, цена которого хоть сколько-нибудь велика, в контур последовательно. Иначе пользователь рискует банально сжечь прибор, так и не успев выяснить то, ради чего все затевалось. Если даже если тот выдержит такое варварское обращение, его показаниям не следует доверять, поскольку ток в цепи претерпевает серьезные изменения при таком подключении вольтметра, опять же отодвигая в неизвестное возможность узнать действительное напряжение участка, в котором производятся измерения.

Меры безопасности при эксплуатации

Поскольку сопротивление самого вольтметра в большинстве случаев достаточно велико, а схема подключения, соответственно, используется параллельная, риск получить какой-либо серьезный в низковольтной цепи минимален. Однако если речь о промышленных приборах, особенно в стационарном исполнении, это подразумевает огромные значения измеряемых величин как напряжений, так и, скорее всего, токов. Поэтому здесь техника безопасности должна быть на высочайшем уровне, и без достаточных знаний, резиновых перчаток, ковриков и других соответствующих мер, естественно, какая-либо активность противопоказана. То, что измеряет вольтметр, скорее всего, очень опасно для жизни, поэтому рекомендуем не испытывать судьбу. В любом случае прикасаться к даже если цепь по определению низковольтная, не следует.

Заключение

Отвечая на вопрос о том, что измеряет вольтметр, мы рассмотрели в общих чертах его устройство, основные технические характеристики, классификацию. Конечно, этот небольшой обзор не претендует на всеобъемлющую полноту, особенно в условиях недостаточного количества базовых знаний по электротехнике у читателя.

Подытоживая, следует отметить, что измеряет вольтметр, конечно же, напряжение на участке цепи, к которому он подключен параллельно. В противном случае его показания будут недостоверны, не говоря уже об опасности возможной потери дорогостоящего оборудования. Читателю следует быть внимательным при эксплуатации прибора в домашних условиях, поскольку контакт с высоковольтными участками цепей опасен для жизни.

В процессе эксплуатации бытовых электроприборов возникают ситуации, когда требуется измерение напряжения. Для проверки работоспособности розеток не всегда достаточно однополюсного указателя: наличие фазы он проверит, а вот для диагностики обрыва нулевого провода этот метод не поможет. То же самое относится и к неисправностям осветительных приборов. Для определения целостности удлинителей и шнуров питания бытовых приборов метод измерения напряжения является более наглядным.

При помощи вольтметра выявляются такие неисправности, как некачественное контактное соединение, снижающее величину напряжения на нагрузке. Указатель покажет наличие на ней фазы, но из-за недостаточной величины напряжения электроприбор может работать с пониженной мощностью (обогреватель) или не работать совсем (телевизор, компьютер, стиральная машина).

Только измерением можно определить наличие повышенного или пониженного напряжения в электрической сети. Завышенное напряжение – частая причина поломок бытовой техники. Электроприборы начинают потреблять больший ток и работать в режиме, не предусмотренном производителем. Следствие этого – сокращение ресурса работы. Лампы накаливания при завышенном напряжении не только быстрее перегорают, но и взрываются при включении.

Заниженное значение напряжения в сети не менее опасно для бытовых электроприборов. Электроинструмент перегревается, а компрессор холодильника выходит из строя.

Причины и методы измерений колебаний напряжения

Согласно ГОСТ 13109 величина напряжения в сети не должны выходить из диапазона 198 – 242 В (220В ± 10%). Если у вас часто выходят из строя лампы, периодически изменяется их световой поток или при загадочных обстоятельствах выходит из строя бытовая техника, нужно проверить величину напряжения в электропроводке. Во избежание ненужных поломок электроприборов, до окончания проверки лучше отключить от сети все лишнее.

Измерения производятся либо постоянным наблюдением за подключенным к сети вольтметром или мультиметром, либо периодическим (раз в полчаса) измерением в фиксацией показаний. Величина напряжения в сети не постоянна и изменяется в зависимости от степени загруженности. Самое высокое значение будет ночью, когда все спят и не пользуются электроприборами.

При колебаниях и провалах напряжения, возникающих на короткое время, для контроля полезно использовать лампы накаливания. Если лампочка вдруг потускнеет или ярче загорится – в тот же момент производится измерение напряжения в сети. Причиной таких колебаний является подключение к сети мощных потребителей, снижающих напряжение в фазе, к которой они подключены. В оставшихся фазах напряжение может наоборот – вырасти.

Посадки напряжения, вызванные работой сварочного аппарата, легко выявляются при помощи лампы накаливания. Она будет снижать яркость свечения при сварке и гореть совсем тускло в моменты «залипания» электрода. Тот, кто хоть иногда пользовался сварочным аппаратом, по ритму изменений яркости лампы безошибочно определит, что провалы напряжения вызваны именно им.

Самая серьезная причина изменения величины напряжения – обрыв нуля в трехфазной питающей сети. Все потребители дома или поселка равномерно распределяются по трем фазам. При наличии нуля напряжение у всех примерно одинаковое и незначительно зависит от нагрузки по фазам. Но при его обрыве напряжение перераспределяется таким образом, что на фазе с минимальной нагрузкой напряжение становится наибольшим. При нагрузке, близкой к нулю, напряжение приближается к 380 В.

При подозрении на обрыв нуля (резкие изменения яркости свечения ламп, как в большую, так и в меньшую сторону, изменение тона работы компрессора холодильника, частоты вращения электроинструмента), немедленно обесточьте всю квартиру и измерьте напряжение на вводе.

Линейные и фазные напряжения

При выполнении измерений в электрощитах полезно знать, чем отличается линейное напряжение от фазного. На вход трехфазных щитков приходят кабели с четырьмя-пятью жилами. Три жилы – это «фазы», четвертая жила четырехжильного кабеля – совмещенный нулевой проводник. Назначение двух оставшихся жил пятижильного кабеля – рабочий ноль и защитный ноль.

Напряжение между любыми двумя фазами называется линейным и равно 380 В. Напряжение между фазой и нулевым рабочим (совмещенным) проводником называется фазным и равно 220 В. Напряжение между фазой и нулевым защитным проводником в нормальном режиме работы сети равно фазному, между защитным и рабочим проводниками – нулю.

Однофазные щитки получают питание от двух- или трехжильных кабелей, все автоматические выключатели них – однополюсные. Напряжение в них измеряется между фазой и нулем и оно – только фазное, равное 220 В.

Как измерить напряжение?

Для измерений используются приборы:

вольтметр – специализированный прибор, предназначенный только для измерения напряжения;


мультиметр – комбинированный цифровой прибор, предназначенный для измерения ряда электрических величин ();


тестер – комбинированный аналоговый прибор, выполняющий функции мультиметра., но в отличие от него имеющий шкалу со стрелкой.


Перед использованием нужно обратить внимание на состояние изоляции соединительных проводов прибора и изучить инструкцию по его эксплуатации. При использовании мультиметров и тестеров – правильно выбрать род тока и предел измерения.

Род тока Обозначение на мультиметре Обозначение на тестере
Переменный АС ~
постоянный DC =

Предел измерения всегда первоначально выставляется больше ожидаемого. При измерении напряжений в трехфазном щитке он не должен быть ниже 500 В.

При измерениях напряжений источников постоянного тока нужно соблюдать полярность подключения прибора. Для тестера это очень важно, так как при ошибке в подключении его стрелка отклонится в обратную сторону. Мультиметр при обратной полярности покажет на индикаторе перед измеренным значением знак «–». И не забудьте переключить прибор в режим измерения постоянного напряжения.

Недавно один знакомый в каком-то бытовом разговоре услышал слово «вольтметр» и спросил, что это такое. Итак, освежим школьные знания.

У нас в доме, на работе и на улице в наше время все зависит от электроэнергии. Мы постоянно пользуемся электрическим током — переменным и постоянным. Ток — это направленное движение носителей заряда под действием электрического поля. Так вот, напряжение, или разность потенциалов — это физическая величина, равная работе электрического поля, которую оно совершает, перенося единичный заряд из одного места в другое.

Когда мы говорим о гальваническом элементе, где происходят внутренние химические процессы, или турбине, которую вращают воды реки, то употреблять выражение «разность потенциалов» некорректно, ведь работу по перемещению заряда производят сторонние силы, имеющие химическую или механическую природу. Для таких случаев используется понятие электродвижущей силы (ЭДС). Именно этот показатель пишут на батарейках, которые продаются на кассе в магазине, и при подключении вольтметра к клеммам без подключения цепи с нагрузкой мы увидим именно его.

Измеряются и ЭДС, и напряжение в вольтах. Формально размерность этой единицы объясняется так: разность потенциалов между точками, А и В равна 1 В, если для перемещения заряда в 1 кулон из точки, А в точку В мы потратим 1 джоуль работы. От этой единицы — вольта — и происходит бытовое название напряжения, когда его измеряют: вольтаж.

Как работает вольтметр

Если нам надо измерить напряжение, значит, необходимо сделать так, чтобы ток через измерительный прибор не проходил. Поэтому к работающей цепи мы подключаем прибор параллельно. Цепь продолжает работать, а прибор должен иметь очень высокое последовательно подключенное сопротивление, чтобы его показания были как можно более точными. В простейшем варианте прибор состоит из магнитной системы, в которой находится подвижная рамка-катушка. На этой рамке закреплены спиральные пружинки, которые создают противодействующий момент и стрелка.

Такие простейшие магнитоэлектрические приборы обычно все видели в детстве. Кстати, прибор для измерения тока— амперметр — устроен так же, только нагрузка в нем маленькая и ставится параллельно, а сам прибор ставится в цепь последовательно.

Существуют также электромагнитные приборы (там взаимодействуют неподвижная катушка и подвижный сердечник) и электродинамические (там работают две катушки).

Помимо этих трех видов, используются также вольтметры с иными принципиальными схемами, но они имеют более узкие области применения. К таким приборам относятся термоэлектрические (в них используется свойство тока нагревать проводник) и выпрямительные (в которых скомбинирован диодный выпрямитель и магнито-электрический механизм).

Все эти приборы имеют одно общее — шкалу, по которой мы и видим результат измерений. Чем больше измеряемый параметр, тем больше отклоняется стрелка. Приборы такого рода называются аналоговыми. Недостаток их очевиден: при длительном использовании механизм имеет свойство изнашиваться, показания часто зависят от условий окружающий среды, да и удобнее информацию воспринимать с экрана, где показываются нужные нам цифры. И тут нам на помощь приходят цифровые вольтметры.

Принцип отображения результата измерений

Особенностью цифровых измерительных приборов является то, что аналоговый сигнал (если отобразить его на графике, то получится прямая линия при постоянном напряжении, и синусоида — при переменном) преобразуется в цифровой, после чего попадает на счетчик и экран, где мы и видим результат измерений. Реализуется эта схема при помощи микросхем, ассортимент которых в настоящее время позволяет производить самые разнообразные приборы — например, для измерения амплитуды переменного напряжения, импульсные, фазочувствительные и т. п.

Классификация

При всем своем разнообразии эти измерительные приборы можно классифицировать по нескольким параметрам. Это поможет вам выбрать нужный именно вам, если вы соберетесь его приобрести.

Итак, вольтметры можно классифицировать по:

По принципу работы вольтметры бывают электромеханические и электронные. Первые включают в себя простые приборы, описанные в предыдущей главе — магнитоэлектрические, электродинамические, электромагнитные, термоэлектрические, выпрямительные и электростатические. Ко вторым — приборы с цифровым и аналоговым преобразованием сигнала и выводом его на панель.

По сфере своего применения приборы изготовляются для измерения постоянного тока, переменного тока, универсальные, импульсные, фазочувствительные и селективные.

По конструкции они бывают переносные, представляющие собой устройства с «крокодильчиками» (их можно положить в сумку, а то и в карман) и стационарные, которыми пользуются в помещении. В число последних включаются также щитовые: они предназначены для постоянной установки в приборную панель.

Класс точности на измерительных приборах проставляется цифрой, и не все обращают на это внимание, а зря. Иногда точность прибора имеет принципиальное значение.

Цифра, не обведенная кружком, показывает относительную погрешность измерений, и дается она в процентах. В России есть следующие классы точности приборов по относительной погрешности: 6, 4, 2,5, 1,5, 1,0, 0,5, 0,2, 0,1, 0,05, 0,02, 0,01, 0,005, 0,002, 0,001. Указанная цифра показывает, на сколько процентов могут отличаться показания прибора от истинного значения измеряемой величины. Важно, что это актуально в диапазоне работы прибора, и этот диапазон должен указываться на приборе. Он не всегда совпадает с нулевой отметкой шкалы: при значениях, близких к нулю, вероятность погрешности стремится к бесконечности.

Если у прибора неравномерная шкала, то класс точности указывают цифрой, под которой стоит знак угла. Это значит, что погрешность дается в долях от длины шкалы.

Обозначение в виде дроби отображает погрешность в конце шкалы и в начале.

Отличием цифровых приборов является то, что измеряемый диапазон в них регулируется; это позволяет более точно производить измерения.

Выбор вольтметра

Если вы решили купить себе вольтметр, вам необходимо определиться со следующим:

  1. В каких диапазонах будут производиться измерения. Согласитесь, есть большая разница между работой на понижающей подстанции, где интервал — от 10 кВ до 380 В, и ремонтом бытовой техники, где этот диапазон — от 3 В до 220 В.
  2. В каких условиях будет эксплуатироваться прибор. Будет ли это дом, лаборатория, улица или вам нужно перемещаться по клиентам.
  3. Нет ли необходимости в измерении других параметров. Обычно она есть всегда, только весь вопрос в том, покупать ли отдельные приборы или один мультиметр.

Если вы работаете с высокими напряжениями, вам лучше остановить свой выбор на производителях электромеханических киловольтметрах. У них достаточный класс точности для больших величин, и при этом есть одно несомненное достоинство — надежность. У электронных устройств, работающих на микроэлектронике, с этим пока проблема: на перегрузки они реагируют плохо, ломаются. На рынке представлены как переносные, так и предназначенные для встройки в панель варианты таких приборов.

Стационарные устройства предпочтительнее для работы в лаборатории или мастерской. Они представлены довольно большим ассортиментом — как электромеханические, так и цифровые.

Некоторым людям, проживающим в частном секторе, нужен вольтметр для установки его в щиток (обычно он на столбе у дома). Для этого предназначены щитовые вольтметры, которые можно установить в din-рейку — как ставятся счетчики и УЗО, например. Стоят они от 900 до 4000 рублей, и чаще всего выпускаются в цифровом варианте, но если напряжение у вас в районе имеет привычку «скакать», то можно приобрести и электромеханический — они, кстати, дешевле.

Наконец, если вы производите измерения на выезде — вольтметра вам мало. С 90-х годов прошлого века среди тех, чья работа связана с перемещением получили популярность тестеры, или мультиметры. Они существовали и ранее, но их точность оставляла желать лучшего. Сейчас же выбор и качество этих приборов существенно возросли, при это цена на них сравнительно невысока. Какие же преимущества есть у тестеров?

Выпускаются как цифровые тестеры, так и аналоговые. Последние более надежны, но менее точны: время от времени приходится ставить стрелку на место.

Как пользоваться

Как подключается вольтметр? Параллельно! Это правило следовало выучить еще в школе.

Убедитесь, что диапазон измерений соответствует предполагаемому напряжению в цепи. Если этот диапазон большой (киловольты), пострадает точность, если маленький — пострадает прибор.

Если вольтметр электромеханический, правильно его установите. Производитель указывает, как это сделать. От этого зависит точность показаний.

Если вольтметр предназначен для измерения постоянного напряжения, не вздумайте делать им замер переменного. Если же он универсальный, то переключите его в нужный режим.

Вольтметр со стрелкой нуждается в корректировке стрелки в положение «0». Делается это с помощью отвертки, если нет специальной ручки.

Не хватайтесь за оголенные части щупов голыми руками, особенно если напряжение в сети более 60 В. Как минимум это малоприятно, как максимум — сами понимаете. С высокими напряжениями работают в перчатках.

Своими руками

Несмотря на то что выбор вольтметров сейчас огромен, всегда находятся люди, которым всегда хочется все сделать самим. С чем это связано — есть разные мнения. Я не буду комментировать ничьи желания, это не тема статьи. Зато расскажу, как сделать вольтметр своими руками (или переделать старый). Ведь ничего невозможного тут нет.

Электромеханический вольтметр

Вам понадобятся следующие компоненты:

На первой схеме представлен простой вольтметр постоянного тока с четырьмя диапазонами измерений — выбор диапазона зависит от того, на какую нагрузку мы поставим переключатель. На добавочных схемах мы видим : их монтаж расширяет применение прибора, теперь им можно измерять напряжение в сети переменного тока.

Перед сборкой убедитесь, что магнитная головка со стрелкой исправны, у нее не оторваны спиральные пружинки и рамка нормально ходит. После этого можно приступить к монтажу мостика, а потом — подсоединить магазин резисторов с переключателем. Вам также потребуется изготовить новую шкалу. Для этого заклейте старую бумагой, обрежьте по контуру и нарисуйте на ней 4 полукруглых линии. После сборки можете приступать к калибровке. Для этого нужно замерить напряжение тестером, а затем, переключив новое изделие на требуемый диапазон, новым нашим прибором. На шкале сделать отметку. И так до тех пор, пока шкала не будет проградуирована.

Предупреждение: перед испытаниями высоких напряжений наденьте перчатки.

При желании можно изготовить и цифровой вольтметр. Схем в сети для этого предостаточно, равно как и комплектующих. Одну из схем, на 8-разрядном микроконтроллере, я представлю здесь. Предназначена для измерения напряжений до 30 В

В общем, если ваши руки — не для скуки, дерзайте!

Приборы для измерения силы тока образуют подгруппу А-амперметры. Внутри этой подгруппы выделяют амперметры постоянного тока(А2), переменного тока А3),универсальные(А7) и преобразователи тока (А9).

Амперметры строятся на базе электромеханических приборов (см. раздел 2.1), которые по принципу своей работы позволяют измерять постоянные и переменные токи низкой частоты. На них распространяются требования ГОСТ, который устанавливает следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0.Дополение электромеханических приборов преобразователями переменного тока в постоянный позволяет значительно расширить их возможности и использовать для измерения на радиочастотах.

Более обширна классификация приборов для измерения напряжения – вольтметры, образующие группу В. Среди приборов этой подгруппы выделяют вольтметры постоянного тока (В2), переменного (В3), импульсного тока (В4), фазочувствительные (В5), селективные (В6), универсальные (В7),измеритель отношения, разности и нестабильности напряжений (В8), преобразователь напряжений (В9).

Вольтметры постоянного и переменного тока низкой частоты могут строится на базе электромеханических приборов (см.раздел 2.1) согласно ГОСТ. Однако, как правило, вольтметры – это представители электронных измерительных приборов в аналоговом или цифровом вариантах. На электронные аналоговые вольтметры также распространяются требования ГОСТ, в частности вольтметры видов В3…В7 дополнительно классифицируются по измеряемому параметру напряжения на вольтметры амплитудного (блокового), среднеквадратического и средневыпрямленного напряжения. Они могут иметь классы точности 0,1; 0,2; 0,5;1,0; 1,5;2,5;4,0;5,0; 15; 25.

4.3 Измерение тока

Для измерения тока амперметр включают последовательно в разрыв измеряемой цепи. Амперметр любой системы можно представить в виде следующей эквивалентной схемы (рис. 4.1а), где LА,CА,RА, - индуктивность, емкость, сопротивление внутренней цепи амперметра. Очевидно, что включение амперметра в измеряемую цепь окажет на нее параметрическое и энергетическое влияние. Параметрическое влияние тем значительнее, чем выше частота и большеLАиCА, энергетическое – чем большеRА, так как при этом возрастет потребление мощности от измеряемой цепи.

Рисунок 4.1- Измерение тока высокой частоты:

а) эквивалентная схема амперметра;

б) включение амперметра;

в) структурная схема амперметра с преобразованием.

Для измерения тока высокой частоты следует использовать схему с преобразованием (рис 4.1 в), где сначала ток высокой частоты преобразуется в постоянный, который измеряют магнитоэлектрическим индикатором – микро или миллиамперметром. Преобразование осуществляют либо за счет теплового действия тока, либо путем его выпрямления. Поэтому высокочастотные амперметры представляют собой совокупность индикатора и преобразователя (рис. 4.1в), и называется термоамперметрами или выпрямителями.

Термоамперметр состоит из термоэлектрического преобразователя и магнитоэлектрического индикатора, шкалу которого градуируют в значениях измеряемого тока. Термоэлектрический преобразователь представляет собой тонкую проволоку из тугоплавкого металла, называемую нагревателем, и одну или несколько термопар, приваренных к его середине. Такой термопреобразователь называется контактным (рис.4.2.а). При прохождении измеряемого тока через нагреватель, место контакта нагревается и термопары нагреваются до температуры tº1, а холодный слойbостается при температуре окружающей средыtº0 . В результате, в термопаре возникает термоЭДС Ет, пропорциональная разности температур в месте контакта с нагревателем и внешних концов термопары. Индикатор присоединен к этим концам термопары и по нему протекает ток, пропорциональный квадрату среднеквадратического значения измеряемого тока:

Iи =Eт/(Rт +Rн), (4.7)

где Rт,Rн – сопротивления термопары и индикатора, т.о. , шкала термоэлектрического прибора близка к квадратичной.

На рис.4.2.б приведена схема бесконтактного термоэлектрического преобразователя. В контактном преобразователе имеется гальваническая связь между нагревателем и термопарой, т.е., между входной и выходной цепями, что не всегда допустимо. В бесконтактном преобразователе, преобразователь отделен от термопары из стекла или керамики, либо воздушной прослойкой.

Рисунок 4.2.- Термоэлектрический преобразователь

Термоэлектрические измерительные приборы получили распространение преимущественно для измерения токов. В качестве вольтметров они практически не применяются, так как их входное сопротивление мало. К достоинствам приборов термоэлектрической системы можно отвести высокую чувствительность к измеряемому току, широкий диапазон частот, а также возможность измерения средних квадратических значений токов произвольной формы. Недостатком термоэлектрических приборов является неравномерность шкалы, зависимость показаний от температуры окружающей среды и большая инерционность термопреобразований. Термоэлектрические приборы очень чувствительны к перегрузкам. В зависимости от назначения они имеют различные пределы измерения *(от 1 мА до 50 А), классы точности (от 0,1 до 2,5) и частный диапазон (от 45 Гц до сотен мегагерц). Термоамперметры обозначаются буквой «Т» и номером модели: Т20, Т29…

Выпрямительные приборы (амперметры) применяются для измерения силы тока и напряжения в частотном диапазоне от звуковых частот до высоких и сверхвысоких частот. Принцип работы таких приборов заключается в выпрямлении выпрямления переменного тока с помощью полупроводниковых диодов (рис.4.3). Постоянная составляющая выпрямленного тока измеряется прибором магнитоэлектрической системы (микроамперметром, миллиамперметром). В схеме прибора используют однополупериодные и двухполупериодные выпрямители. В однополупериодных схемах (рис.4.3.а). Ток iчерез магнитоэлектрический прибор, включенный последовательно с диодом Д1, пропускается только в положительный полупериод. В отрицательный полупериод, для которого сопротивление диода Д1 велико, ток протекает через диод Д2, включенный параллельно прибору. Для уравнивания сопротивления параллельных ветвей последовательно со вторым диодом включен резисторR, сопротивление которого равно измерительной цепи прибора. Подвижная часть магнитоэлектрического прибора обладает механической инерцией и на частотах выше 10…20 Гц не успевает следить за

Рисунок 4.3 Выпрямительные приборы

Мгновенными значениями вращающегося момента, реагируя только на среднее значение момента. Для однополупериодного выпрямителя измеряемого тока синусоидальной формы:

а показания прибора

α = Si* Iср (4.9)

где Si– чувствительность магнитоэлектрического прибора по току; В двух полупериодных схемах выпрямителя (рис. 4.3.б) токi, протекающий через прибор, увеличиваются вдвое по сравнению с током, протекающим в схеме (рис 4.3 а).

Для синусоидального тока

Iср.в = 0,636 *Im(4.10)

Из (4.9) видно, что шкала выпрямительного прибора и при любой форме кривой измеряемого тока отклонение стрелки прибора пропорционально среднему за период значению. Однако, на практике, шкалу выпрямительных приборов всегда градуируют в среднеквадратичных значениях напряжения (тока) синусоидальной формы. Следовательно, в приборах с двухполупериодным выпрямлением все значения оцифрованных делений как бы умножены на коэффициент формы Кф = 1,11. Отсюда следует, что при измерении тока или напряжения несинусоидальной формы, полученный тосчет по шкале такого выпрямительного прибора сначала нужно разделить на 1,11 (получить выпрямленное значение измереяемой величины), а затем умножить на коэффициент формы, соответствующий форме реального сигнала. В приборах с однополупериодным выпрямлением вместо 1,11 подставляют 2,22.

Выпрямительные приборы получили широкое распространение в качестве комбинированных измерителей постоянного и переменного тока и напряжения классов мощности 1,5 и 2,5; с пределами измерения по току от 2 мА до 600 А; по напряжению от 0,3 до 600 В.

Достоинствами выпрямительных приборов являются высокая чувствительность, малое собственное потребление энергии и измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется возможностями применяемых диодов. Применение точечных диодов обеспечивает изменение переменных токов и напряжений до частот порядка 10 4 …10 6 Гц. Основными источниками погрешностей этих приборов являются изменения параметров диодов с течением времени, влияние окружающей температуры, а также отклонение формы кривой измеряемого тока или напряжения от той, при которой произведена градуировка прибора.

Гальванометры.

Высокочувствительные магнитоэлектрические приборы для измерения очень маленьких токов и напряжений называются гальванометрами. Гальванометры часто используются в качестве нуль – индикаторов, фиксирующих отсутствие тока в цепи. У таких гальванометров нулевая отметка находится в середине шкалы.

Так как чувствительность гальванометров очень высока, их градуировочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому, чувствительные гальванометры при выпуске из производства градуируются в единицах измеряемой физической величины и им не присваиваются классы точности. В качестве же метрологических характеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивлению рамки. Чувствительность гальванометров зависит от способов применения (рамки внутри зазора постоянного магнита. Различают гальванометры с подвижной частью (рамкой) на кернах, на растяжках, на подвесе. Современные гальванометры позволяют измерять токи в пределах от 10 -5 …10 -12 А и напряжения до 10 -4 В.

аналоговые электромеханические приборы магнитоэлектрической системы относятся к числу наиболее точных и чувствительных. Так как рамка таких приборов намотана тонким проводом, это не позволяет пропускать через нее токи, превышающие десятки миллиампер. Превышение указанных значений может привести к повреждению провода рамки или спиральной пружинки. Т.О., возникает задача расширения пределов расширения пределов измерения магнитоэлектрических амперметров и вольтметров.

Расширение пределов измерения амперметров достигается включением шунта, параллельного прибору (рис.4.4).Сопротивление шунта Rш должно быть меньше сопротивления рамки прибораRр и подбирается так, чтобы при измерении основная часть измеряемого тока, проходящая через шунт, а ток, протекающий через рамку прибора, не превышал допустимого значения. Если необходимо иметь верхний предел измерения амперметраI, а верхний предел измерения без шунтаIа, то сопротивление шунта

Rш = Rр/ n-1 (4.11)

где n = I/Iа

Рисунок 4.4 Расширение пределов измерения диапазонов амперметра

Амперметры для измерения сравнительно небольших токов (до нескольких десятков ампер) имеют внутренние шунты, вмонтированные в корпус прибора. Для измерения больших токов (до нескольких тысяч ампер) изменяются наружные шунты.

Для расширения пределов измерения вольтметра последовательно с сопротивлением рамки включается добавочное сопротивление Rд (рис.4.5), которое ограничивает

Рисунок 4.5 Расширение пределов измерения вольтметра

падение напряжения на рамке прибора до допустимых пределов. Если необходимо измерять напряжение Uв, то величина добавочного сопротивления должна быть

Rд =Rр *(n- 1) (4.12)

Добавочные сопротивления внутренними, встроенными в корпус вольтметра (при напряжении до 600 В) или наружными (при напряжении 600…1500 В). Наружные добавочные сопротивления выпускаются на определенные номинальные токи (от 0,5 до 30 мА) и имеют классы точности от 0,02 до 1. Шунты и добавочные сопротивления изготавливаются из материалов с высоким удельным сопротивлением, имеющих температурный коэффициент, близкий к нулю.

Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.

Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.

Величина напряжения измеряется в Вольтах , обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).

На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.

Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак "~ ", если постоянного, то знак "".

Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так: ~220 В или ~220 V . На батарейках и аккумуляторах при их маркировке знак "" часто опускается, просто нанесено число. Напряжение бортовой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V , а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V . На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака "+ ".

Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).

Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.

Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.

Как измерять напряжение в электропроводке бытовой сети

Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение к оголенным провода,так как это может привести к поражению электрическим током!

Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10% , то есть может изменяться в пределах от 198 В до 242 В . Если в квартире стали тускло гореть лампочки или часто перегорать, стала нестабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.

Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В;

– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;


– включить измерительный прибор (если необходимо).

Как видно на картинке, в тестере выбран предел измерения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (~ или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.

В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.

Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.

После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. Поэтому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер ~220 В/–9 В.

Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.


Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.

Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.

Так как предел измерений был выставлен ~300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.

Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.

Как измерять напряжение батарейки
аккумулятора или блока питания

Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.

Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».

Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.

Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.

Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.

Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.