Схемы испытателей биполярных транзисторов. Простая приставка-пробник для проверки биполярных транзисторов Тестирование однопереходных и программируемых однопереходных транзисторов

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET , так и J-FET ). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов - эквивалентное последовательное сопротивление (ЭПС или ESR ).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR - MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс . Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. вариант без корпуса, а с корпусом.

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 - прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и "рассыпуха" - планарные конденсаторы и резисторы.

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания .

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Итак, каковы же возможности данного тестера?

Замер ёмкости и параметров электролитического конденсатора.

Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме . Это поможет понять, что же вам показывает прибор.

Проверка биполярных транзисторов.

В качестве подопытного "кролика" возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э ) и напряжение смещения Б-Э (открытия транзистора) Uf . Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний - диод 1N4007.

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf . В техдокументации на диоды указывается как V F - Forward Voltage (иногда V FM ). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007 : V F =677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C =8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT .

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как V F ), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка резисторов.

Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).

Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей . И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току - 1 Ом (1,0Ω).

Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8 .

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part" , что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".

Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Покажу на примере. Вот внутреннее устройство оптопары TLP627.

Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.

Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.

Теперь расскажу о том, какие детали этим тестером НЕ проверить.

    Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;

    Стабилитроны . Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
    При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;

    Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;

    Динисторы . Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;

    Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;

    Варисторы определяет как конденсаторы;

    Однонаправленные супрессоры определяет как диоды.

Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.

Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды. Именно с этого мы и начнем...

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении - бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5...0,8 В, для германиевых - 0,2...0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов , так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45...0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления - более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2...1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора ;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В - прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. "программировать" его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже - для ОПТ - рис. слева, для программируемого ОПТ - рис. справа).

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа - схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение - "тестирование цифровых транзисторов затруднено... Лучший вариант - замена на заведомо исправный транзистор". Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 - 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор , с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором - истоком (3-И) и затвором - стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток - сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя - стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором - истоком и затвором - стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй - между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление - около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа - требования к напряжению на выводах - второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом - к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов - определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» - транзистор структуры n-p-n, если «-» - структуры р-n-р.

http://radiostorage.net/?area=news/1252
В радиолюбительской практике не так уж часто возникает необходимость в применении полевых транзисторов, поэтому многие радиолюбители обычно не утруждают себя постройкой приборов для измерения их основных параметров. Между тем современные полевые транзисторы обладают рядом уникальных качеств, которые, при прочих равных условиях, недоступны их биполярным собратьям. Вспомним лишь некоторые из них: высокое входное сопротивление, большое усиление по мощности, низкий уровень собственных шумов, меньшие искажения формы входного сигнала, отсутствие вторичного теплового пробоя. Даже на заурядных полевых транзисторах серий КП103, КПЗОЗ, КП305 можно собрать всевозможные варианты схем маломощных усилителей, генераторов, детекторов, ключей, при этом созданные узлы могут получиться заметно проще, чем узлы с равноценными свойствами , выполненные исключительно с применением биполярных транзисторов.

Чтобы эффективно применять усилительные полевые транзисторы в своих конструкциях, кроме максимально допустимых режимов работы, например , таких как максимальные ток стока, рассеиваемая мощность и напряжение сток-исток, желательно знать и другие их основные параметры. К их числу можно отнести начальный ток стока, напряжение отсечки, крутизну вольт-амперной характеристики. Эти параметры индивидуальны для каждого конкретного экземпляра транзистора и могут существенно различаться даже у однотипных транзисторов из одной партии. Для измерения этих параметров и предлагается собрать несложный прибор, схема которого изображена на рис. 5.33. Остальные важные статические и динамические параметры можно найти в справочниках.

Предлагаемый для сборки прибор позволяет измерять начальный ток стока, напряжение отсечки, а при выполнении несложных вычислений и крутизну вольта-мперной характеристики (усилительные свойства полевого транзистора).

Параметры измеряются с помощью стрелочного микроамперметра РА1, который в зависимости от положения переключателя SB2 измеряет ток стока или напряжение затвор-исток. Оба вида измерений имеют три поддиапазона - 1,5, 15, 30 миллиампер или вольт, которые выбираются трехпозиционным переключателем SB1. Если переключатель SB3 находится в верхнем по схеме положении - «р», то прибором можно проверять транзисторы с р-каналом - КП101, КП103. Если переключатель SB3 установить в положение «п», то тогда можно проверять транзисторы с п-каналом - КП302, КПЗОЗ, КП307 и другие аналогичные.

Для проверки полевых транзисторов с каналом обедненного типа необходимо двуполярное напряжение питания. Для получения стабилизированного напряжения отрицательной полярности из однополярного прибор оснащен несложным однотактным преобразователем полярности напряжения, выполненным по знакомой многим схеме. На транзисторе VT1, трансформаторе Т1 и их внешних элементах выполнен высокочастотный преобразователь. Каскад на транзисторе VT2 выполняет функции параметрического стабилизатора напряжения -10 В. То, что для питания этого прибора достаточно одного напряжения, позволяет использовать для его питания практически любой источник энергии с одним выходным напряжением 9...12 В, например, батарею «Крона», «Ника» или 7Д-0,125Д. Стабилитрон VD6 - защитный на случай пробоя транзистора VT2. Резистор R15 предназначен для разрядки конденсатора СЗ при отключении питания. Сенсор Е1 предназначен для выравнивания потенциалов статического напряжения прибора и тела человека. Диоды VD1, VD2 защищают микроамперметр от повреждения при возможных перегрузках, например, из-за пробоя проверяемого транзистора. Светодиод HL1 светится при наличии напряжения питания.

Детали и конструкция. В устройстве можно использовать постоянные резисторы С1-4, С2-23, МЯТ, ВС. Переменный резистор R9 может быть с выключателем питания типа СПЗ-4в, СПЗ-ЗЗ-20 сопротивлением 2,2...4,7 кОм. Конденсаторы С1, СЗ- К50-35, К50-16, К50-19. Остальные конденсаторы любые керамические или пленочные, например, КМ-5, К73-17, К73-39. Кремниевые диоды VD1, VD2 можно взять любые из серий КД521, КД522, КД105, Д223, 1 N4001-1 N4007. Диодный мост VD3 можно заменить на КЦ422 (А-Г), КД906 или четырьмя диодами КД521А. Стабилитроны: VD4 -КС533А, КС527А, 1N4752A, TZMC-33, BZX/BZV55C-33; VD5 -КС207Б, КС211Ж, 1 N4741 A, TZMC-11, BZX/BZV55C-11; VD6 -КС207В, КС212Ж, КС508А, КС512А, 1N4742A, TZMC-12, BZX/BZV55C-12. Светодиод HL1 использован красного цвета свечения, выполненный в прямоугольном корпусе 5и2,5 мм. Без каких-либо ограничений его можно заменить любым из серий L63, L1503, L1513, АЛ307, КИПД40. Транзистор VT1 может быть серий КТ602, КТ611, КТ630, 2SC2331, 2SC2316; VT2 заменяется на КТ502, КТ639, КТ644, 2SA642, 2SA916 с любым буквенным индексом. Трансформатор Т1 можно изготовить на чашечном ферритовом магнитопроводе диаметром 13 мм и высотой 8 мм от генератора тока стирания и подмагничивания отечественного носимого кассетного магнитофона, например, «Электроника-324». Обмотки 1 и 3 трансформатора содержат по 240 витков провода ПЭВ1-0.06, обмотка 2-35 витков провода ПЭВ1-0.06. Обмотки наматывают последовательно согласно нумерации. Между ними прокладывают

по одному слою тонкой фторопластовой или полиэтилентерефта-латной пленки от конденсаторов. Трансформатор можно намотать и на кольцевом ферритовом магнитопроводе К16x13x4 из феррита М2000НМ1. Число витков обмоток и тип провода те же. РА1 - микроамперметр М4761 от индикатора уровня записи/воспроизведения катушечного магнитофона. Сопротивление рамки этого индикатора постоянному току - 1 кОм. Его можно заменить любым другим с током полного отклонения до 300 мкА, например, М4204, но в этом случае может потребоваться существенная коррекция сопротивлений резисторов R1-R6. Переключатели SB1-SB3 от импортной аудиотехники, при этом SB1 должен быть на три положения, а переключатели SB2, SB3 могут быть и типа ПД-2, 2П4Н от переключателя диапазонов карманного радиоприемника. Для подключения проверяемого транзистора удобно использовать какой-либо разъем с шагом гнезд 2,5 мм или один ряд доработанной 14-выводной DIP-панельки для микросхем . Сенсор Е1 можно сделать из неисправного транзистора в металлостеклянном корпусе, например, МП39.

На монтажной плате размещают только детали преобразователя. Диоды VD1, VD2 и резисторы R1-R8 припаиваются к контактам переключателей. В авторском варианте прибор собран в корпусе размерами 135x70x35 мм от радиоприемника «Невский».

Налаживание. Подбором резисторов R1-R3 устанавливают границы диапазонов при измерении напряжения. Начинать следует с подбора резистора R1. Резисторами R4-R6 устанавливают границы диапазонов при измерении тока. Начинать следует с подбора резистора R6. Рамка М4761 обладает небольшой нелинейностью , поэтому наносить деления на новой шкале желательно во время градуировки, например, в положении «1,5 В». Эффектно будет смотреться шкала, нарисованная с помощью компьютера, например, программой «Corel DRAW 11.663» и распечатанная на цветном принтере. Естественно, в зависимости от вкусов, потребностей или наличия рамки с подходящей шкалой можно выбрать и другие пределы измерений. Если преобразователь полярности на транзисторе VT1 не возбуждается, то следует поменять местами выводы обмотки 2. При желании повысить КПД преобразователя, ток потребления которого при отсутствии проверяемого транзистора не должен превышать 20 мА, можно подобрать емкость конденсатора С2.

Работа с прибором. Вставлять в разъем проверяемый транзистор можно только при выключенном питании, предварительно коснувшись сенсора Е1. При подключении маломощных полевых транзисторов с изолированным затвором, например, таких как КП305, их выводы желательно закорачивать проволочной перемычкой, например, временно обмотав их тонкой проволокой у основания корпуса транзистора. Напряжение отсечки - это напряжение между затвором и истоком , при котором ток стока уменьшается почти до нуля. Начальный ток стока - ток при нулевом напряжении затвор-исток. Крутизну характеристики можно вычислить по простой формуле вмд/в = Д1мА/Д11в, где ДІ, AU - приращение тока стока при соответствующем приращении напряжения затвор-исток.

Об изменениях конструкции. Если имеется свободный двуполярный источник питания с выходными напряжениями ± 10 В, то можно отказаться от преобразователя полярности напряжения питания. Можно использовать и две батареи «Крона». Если ввести еще один переключатель на два положения, то можно переключать нижний по схеме вывод резистора R9 от общего провода к правому по схеме выводу резистора R6. Это позволит детально проверять полевые транзисторы обогащенного типа, например, такие как КП501, КП505, BUZ90. Измерение напряжения затвор-исток при этом удобнее проводить цифровым вольтметром, подключенным к общему проводу и среднему выводу резистора R9.

Этим прибором не следует проверять чрезвычайно чувствительные к повреждениям арсенидгаллиевые полевые транзисторы -ЗП324, ЗП344 и другие аналогичные.

Литература: А. П. Кашкаров, А. Л. Бутов - Радиолюбителям схемы, Москва 2008



Приставка к вольтметру для измерения параметров полевых транзисторов

http://sezador.radioscanner.ru/pages/articles/sources/jfetester.htm


Определять параметры полевых транзисторов с p-n-переходом на затворе, как n-канальных, так и p-канальных, поможет описанная ниже простая и недорогая приставка к вольтметру, которая позволяет измерять начальный ток стока полевого транзистора и его напряжение отсечки. Таким образом, используя лишь эту приставку в комплекте с каким-нибудь вольтметром, можно, например, отобрать транзисторы с наилучшими характеристиками или подобрать пару одинаковых по параметрам транзисторов. Кроме того , приставка позволяет проверить полевой транзистор на работоспособность, приблизительно определить крутизну полевого транзистора в предполагаемой рабочей точке, а студентам и начинающим радиолюбителям - исследовать полевой транзистор чтобы лучше понять его принцип работы.

Схема приставки-измерителя параметров полевых транзисторов приведена на рис.1 . Главная её особенность - стабилизированное напряжение сток-исток при измерении начального тока стока полевого транзистора.

Такой параметр полевого транзистора с p-n -переходом на затворе как начальный ток стока (I С НАЧ ), по определению, должен измеряться при нулевом значении напряжения затвор-исток (U ЗИ =0V ) и фиксированном напряжении сток-исток (U СИ =const ). На практике же для измерения начального тока стока полевого транзистора в цепь его стока или истока включают миллиамперметр. Такой способ измерения не соответствует собственно определению параметра полевого транзистора I С НАЧ поскольку собственное омическое сопротивление реального миллиамперметра отлично от нуля. При включении такого миллиамперметра в цепь истока как показано на рис.2а , из-за протекающего через миллиамперметр тока, на его зажимах возникает разность потенциалов, подводимая как раз между истоком и затвором полевого транзистора, и значение U ЗИ поэтому уже не будет нулевым. Например, значение собственного омического сопротивления авометра типа Ц4315 на пределе измерения "5 мА" равно 40 Ом , а на пределе "25 мА" - соответственно в пять раз меньше, то есть 8 Ом . Чтобы с достаточной точностью измерить небольшой по величине начальный тока стока, как, например, у полевых транзисторов КП303В и КП303И , авометр надо использовать на пределе измерения "5 мА" . Но в этом случае ток стока всего 3 мА приведёт к возникновению между истоком и затвором напряжения величиной (3 мА x 40 Ом) = 0,12В , что для полевого транзистора является уже довольно значительным напряжением смещения. Или, например, начальный ток стока импортного полевого транзистора J310 часто превышает 20 мА , и измерять его надо уже на пределе "25 мА" . Но (20 мА x 8 Ом) = 0,16В - это тоже немало. Какой-нибудь импортный цифровой мультиметр, например, типа DT9205A , ничем не лучше в этом смысле отечественного Ц4315 , так как его собственное омическое сопротивление на пределе измерения постоянного тока "20 мА" равно 10 Ом .

Несколько меньше нареканий вызывает схема измерения, приведенная на рис.2б , где миллиамперметр включен в цепь стока полевого транзистора. Здесь падение напряжения на миллиамперметре приводит лишь к изменению напряжения сток-исток. Но это, в свою очередь, также вызывает некоторое изменение тока стока, поскольку, как показано в , выходная характеристика полевых транзисторов далека от идеальной, особенно при напряжении сток-исток ниже 5 В .

В схеме приставки-измерителя параметров полевых транзисторов, приведенной на рис.1 , на сток подключаемого полевого транзистора подаётся стабилизированное напряжение питания ("+5 В" для n -канального транзистора и "-5 В" для p -канального - устанавливается переключателем SA1), а его исток подсоединён к так называемому "виртуальному нулю" преобразователя входного тока в выходное напряжение, выполненного на операционном усилителе D3:1 . На рис.3 приведена упрощённая схема измерения начального тока стока полевого транзистора, поясняющая принцип стабилизации напряжения сток-исток.

Охваченный отрицательной обратной связью операционный усилитель стремится установить на своём выходе такое напряжение, чтобы по возможности поддерживать на своём инвертирующем входе напряжение, практически равное напряжению на входе неинвертирующем. А поскольку неинвертирующий вход операционного усилителя подсоединён к общему проводу схемы, то напряжение на его инвертирующем входе также будет очень близко к нулю, во всяком случае пока операционный усилитель работает в пределах своей линейной области. Эту точку схемы с застабилизированным нулевым потенциалом, но не связанную с общим проводом гальванически, ещё называют "виртуальным нулём" .

На приведенной на рис.3 схеме показано , что напряжение на инвертирующем входе операционного усилителя будет равно нулю когда ток, протекающий через резистор R8 , равен току стока подключенного к "виртуальному нулю" полевого транзистора (ничтожно малым входным током операционного усилителя пренебрегаем). Напряжение на выходе схемы будет при этом пропорционально величине этого тока, причём коэффициент пропорциональности задаётся сопротивлением резистора R8 , а напряжение между истоком и стоком полевого транзистора остаётся постоянным и равным поданному на вывод стока напряжению питания (в данном случае +5В ). Более подробно работа управляемого током источника напряжения на операционном усилителе рассмотрена в .

Чтобы измерять напряжение отсечки полевых транзисторов, приблизительно определять крутизну их передаточной характеристики или просто исследовать их работу в познавательных целях необходимо иметь возможность регулировать напряжение на затворе полевого транзистора. Эту роль выполняет функциональный узел на операционном усилителе D3:2 , работу которого поясняет схема на рис.4 .

В этой схеме через резистор R7 протекает стабильный постоянный ток, величина которого определяется суммой сопротивлений резисторов R2 и R5 . Поскольку охваченный отрицательной обратной связью через переменный резистор R7 операционный усилитель D3:2 поддерживает на своём выходе такое напряжение, что потенциал "виртуального нуля" равен потенциалу общего провода, то величина выходного напряжения будет прямо пропорциональна сопротивлению этого переменного резистора.

Значение напряжения отсечки у полевых транзисторов различного типа варьируется в довольно широких пределах. Поэтому в приведенной на рис.1 схеме предусмотрено переключение диапазона регулирования напряжения на затворе переключателем SA3 : в его верхнем по схеме положении максимальное значение напряжения устанавливается подстроечным резистором R2 , а в нижнем - подстроечным резистором R3 .

Благодаря применению описанных выше способов стабилизации напряжения U СИ и формирования подаваемого на затвор полевого транзистора управляющего напряжения U ЗИ упростилось переключение между n -канальным и p -канальным типами транзистора. Эту функцию выполняет одиночный переключатель SA1 . Когда он установлен в положение "n-канал" , то на сток полевого транзистора и на вход выполненного на операционном усилителе D3:2 регулятора напряжения подаётся стабилизированное положительное напряжение питания +5В . При этом на затвор подключаемого полевого транзистора с выхода регулятора будет поступать отрицательное управляющее напряжение. Когда же переключатель SA1 установлен в положение "p-канал" , то на сток полевого транзистора и на вход регулятора напряжения подаётся стабилизированное отрицательное напряжение питания -5В , и на затвор полевого транзистора с выхода регулятора будет поступать положительное управляющее напряжение.

Назначение остальных переключателей, показанных на схеме, следующее. SA2 выполняет функцию выключателя схемы измерения на время замены очередного полевого следующим. Когда SA2 включен, то горит зелёный светодиод VD4 для n -канального полевого транзистора или жёлтый VD5 для p -канального. Переключатель SA4 отключает затвор полевого транзистора от выполненного на операционном усилителе D3:2 регулятора напряжения при измерении начального тока стока. И наконец, переключателем SA5 можно выбрать величину, измеряемую подключенным к контактам XT4 и XT5 вольтметром: либо ток стока полевого транзистора (нижнее по схеме положение), либо напряжение на его затворе (верхнее по схеме положение).

RC -цепи компенсации емкостной нагрузки R9:C8 и R10:C7 предотвращают возможное самовозбуждение операционных усилителей , спровоцированное подсоединением к их выходу длинных проводов, которыми приставка-измеритель полевых транзисторов подсоединяется к вольтметру.

На рис.5 приведена схема цепей питания приставки-измерителя параметров полевых транзисторов. Для питания приставки используется вторичная обмотка сетевого трансформатора со средней точкой. К выводам мостового выпрямителя VD3 подключаются крайние выводы обмотки, а её средняя точка подключается к общему проводу схемы. Действующее переменное напряжение на выводах вторичной обмотки, измеренное относительно средней точки, должно быть в пределах 7..11 В , так как напряжение питания операционного усилителя D3 не стабилизируется.

Измеритель параметров полевых транзисторов, включая цепи питания, собран на двухсторонней печатной плате размером 62 x 66 мм . Трассировка печатных проводников на плате приведена на рис.6 , а установка элементов на ней - на рис.7 . Микросхемы D1 и D2 - это выпускаемые в транзисторном корпусе TO-92 маломощные линейные стабилизаторы напряжения MC78L05ABP и MC79L05ABP соответственно (в кодировке фирмы ON Semiconductor ).

Микросхема D3 - это сдвоенный операционный усилитель общего применения LM358P или LM2904P в корпусе DIP-8 (в кодировке фирмы Texas Instruments ). Электролитические конденсаторы C1 и C2 могут быть и меньшей ёмкости, но на рабочее напряжение не менее 25В . Диоды VD1 и VD2 типа 1N4448 можно заменить на отечественные КД510А или КД522Б . При установке надо не ошибиться с их полярностью: у показанных на монтажной схеме диодов 1N4448 полоской отмечен вывод катода. Светодиод VD4 - зелёный L-934GD , а VD5 - жёлтый L-934YD производства фирмы Kingbright или аналогичные им по цвету и размеру. Выпрямительный диодный мост VD3 типа DF01M .

Подстроечные резисторы R2 и R3 - импортные, например типа 3362P фирмы BOURNS или аналогичные по размеру и номинальному сопротивлению. Переменный резистор R7 также импортный.

Керамические конденсаторы C3..C8 - любые подходящие по размеру. Все постоянные резисторы - выводные отечественного производства типа МЛТ , С2-23 или С2-33 номинальной мощностью 0,125 Вт или 0,25 Вт , но подойдут и любые подходящие по размеру импортные. Переключатели SA1..SA5 - любые подходящие по размеру.

Наладка собранной приставки заключается в установке подстроечными резисторами R2 и R3 диапазонов регулировки переменным резистором R7 запирающего напряжения на затворе подключаемого полевого транзистора. Порядок такой:

  1. Перевести переключатель SA3 в верхнее по схеме положение , а движок переменного резистора R7 - в крайнее правое по схеме положение (повернуть по часовой стрелке до упора);

  2. Подключить к приставке вольтметр, подать питание и перевести переключатель SA2 в положение "вкл.";

  3. Подстроечным резистором R2 установить по вольтметру выходное напряжение 8 В ;

  4. Перевести переключатель SA3 в нижнее по схеме положение;

  5. Подстроечным резистором R3 установить на выходе напряжение 2 В .

Печатную плату с установленными на ней элементами легко разместить в подходящем по размерам корпусе. Автор приобрёл для этого на киевском радиорынке готовый платсмассовый корпус, в программе Photohsop создал наклейку с подписями органов управления (см. рис.9 ), распечатал её на фотобумаге и закрепил на передней панели под толстой лавсановой плёнкой теми же винтами, которыми плата на резьбовых стойках прикручивается к корпусу.

Чтобы поднять предназначенные для подключения полевого транзистора цанговые контакты XS1..XS3 до уровня плоскости передней панели корпуса их можно "удлиннить" при помощи подходящего по размеру штыревого контакта от какого-нибудь разъёма как показано на приведенных на рис.9 фотографиях.

Порядок измерения параметров полевого транзистора следующий. До того как вставить полевой транзистор в цанговые контакты "З", "С" и "И" (затвор, сток и исток соответственно) к приставке-измерителю надо подключить вольтметр и подать питание, переключателем SA1 установить соответствующий полевому транзистору тип канала ("n" или "p"), а переключатель SA2 установить в положение "выкл.". При измерении начального тока стока транзистора переключатель SA4 надо перевести в положение "0В", а переключатель SA5 - в положение "I С ". Затем:

  1. Вставить в цанговые контакты полевой транзистор в соответствии с его цоколёвкой;

  2. Переключатель SA2 перевести в положение "вкл.", при этом должен загореться левый зелёный светодиод если переключателем SA1 выбран транзистор с n -каналом или правый жёлтый для транзистора с p -каналом;

  3. По показаниям вольтметра произвести отсчёт измеряемого начального тока стока полевого транзистора исходя из того масштабного соотношения, что 1 В на вольтметре - это ток стока полевого транзистора 10 мА .

Для последующего измерения напряжения отсечки полевого транзистора переключателем SA3 надо выбрать соответствующий типу подключенного полевого транзистора диапазон регулировки напряжения на его затворе ("2В" или "8В"), а сам регулятор вывести в крайнее левое по схеме положение движка переменного резистора R7 (против часовой стрелки до упора). Затем:

  1. Переключатель SA4 перевести в положение "рег.";

  2. Плавно вращать переменный резистор R7 по часовой стрелке до момента, когда изменение показаний вольтметра остановится;

  3. Переключатель SA5 перевести в положение "U ЗИ " - вольтметр покажет напряжение отсечки данного полевого транзистора.

Диапазон измерения начального тока стока полевого транзистора ограничен величиной максимального выходного тока операционного усилителя D3 , в данном случае оно составляет что-то около 20 мА . Чтобы, например, подобрать пару одинаковых по параметрам полевых транзисторов, у которых начальный ток стока может превышать это значение (начальный ток стока такого полевого транзистора как J310 может доходить до 60 мА ) измерять надо не начальный ток стока таких транзисторов, а ток стока при одном и том же запирающем напряжении на затворе, переведя, например, переключатель SA3 в положение "2В" и повернув регулятор напряжения на затворе в крайнее положение по часовой стрелке. Переключатель SA4 при этом должен быть в положении "рег.".

©Задорожный Сергей Михайлович, 2011г.

Литература:

  1. Бочаров Л.Н., "Полевые транзисторы" ; Москва, издательство "Радио и связь", 1984;

  2. Титце У., Шенк К., "Полупроводниковая схемотехника"; перевод с немецкого; Москва, издательство "Мир", 1982.

  3. Задорожный С.М., "Статические параметры полевого транзистора: теория и практика" ;

  4. Кристофер Траск, "Полевые транзисторы в антенном усилителе активной приёмной антенны";

Прибор для проверки полевых транзисторов

http://www.bestreferat.ru/referat-169053.html

Прибор позволяет проверять работоспособность полевых транзисторов с p-n-переходом, с изолированным затвором и встроенным каналом (обедненный тип), а также одно- и двухзатворных транзисторов с изолированными затворами и индуцированным каналом (обогащенный тип).

Переключателем S3 устанавливают, в зависимости от типа испытуемого транзистора, необходимую полярность напряжения на стоке. Для проверки транзисторов с затвором в виде p-n-перехода и транзисторов с изолированным затвором и встроенным каналом переключатель S1 устанавливают в положение Обеднение, a S2 - в положение Подложка.

Для проверки транзисторов с изолированными затворами и индуцированным каналом переключатель S1 переводят в положение Обогащение, a S2 - в положение Подложка для однозатворных и Затвор 2 для двухзатворных транзисторов.

После установки переключателей в нужные положения к гнездам разъема XI подключают проверяемый транзистор, включают питание и, регулируя переменными резисторами R1 и R2 напряжения на затворах, наблюдают за изменением тока стока.

Резисторы R3 и R4 ограничивают ток затвора в случае его пробоя или при ошибочной полярности напряжения на затворе (для транзисторов с затвором в виде p-n-перехода). Резисторы R5 и R6 исключают возможность накопления статических зарядов на гнездах разъема XI для подключения затворов. Резистор R8 ограничивает ток, протекающий через миллиамперметр P1. Мост (диоды VI-V4) обеспечивает требуемую полярность тока через измерительный прибор при любой полярности питающего напряжения.

Налаживание прибора сводится к подбору резистора R8*, обеспечивающего отклонение стрелки миллиамперметра на последнюю отметку шкалы при замкнутых гнездах Сток и Исток.

В приборе может быть использован миллиамперметр с током полного отклонения 10 мА или микроамперметр с соответствующим сопротивлением шунтирующего резистора R7*. Диоды V1-V4 - любые, маломощные, германиевые. Номинальное сопротивление резисторов R1 и R2 - в пределах 5,1...47 кОм.

Прибор питается от двух батарей "Крона" или от двух аккумуляторов 7Д-0,1.

Данным прибором можно измерять и напряжение отсечки (прибор Р1 должен быть на ток 100 мкА). Для этого параллельно гнездам Затвор 1 и Исток устанавливают дополнительные гнезда , к которым подключают вольтметр.

Последовательно с резистором R7* включают кнопку, при нажатии на которую шунтирующий резистор отключается. При нажатой кнопке устанавливают ток стока 10 мкА и по внешнему вольтметру определяют напряжение отсечки.

Несмотря на то, что народ массово кинулся в ламповое и микросхемное усилителе-строение, а на "рассыпухе" - на полевые транзисторы, все еще значительную долю занимают "рассыпные" УМЗЧ на биполярных "выхлопниках". Тем более, подобные аппараты постоянно попадаются для ремонта.

Не вызывает сомнений постулат, что для минимизации нелинейных искажений требуется попарный подбор комплементарных транзисторов по крайней мере по коэффициенту их усиления. Особую важность это приобретает для мощных (сценических) УМЗЧ, в которых используется по несколько запараллеленных "выхлопников".

Если для подбора маломощных транзисторов достаточно "китайских" мультиметров с режимом "бетирования", то для мощных транзисторов (по крайней мере отечественных транзисторов старых разработок), проблема измерения коэффициента их усиления (h 21e) осложняется еще и тем, что он существенно зависит от тока коллектора. Следовательно, измерять h 21e приходится при по крайней мере двух значениях коллекторного тока.

Как-то попались мне для ремонта несколько мощных УМЗЧ, на выходе которых в каждом плече стояло по 4...8 транзисторов КТ864/865. Покупать по несколько коробок с последующим отбором дома - выходило крайне накладно. Поэтому за день по-быстрому собрал "бетник", конструкция которого и приводится, с помощью которого отобрал нужное количество согласованных транзисторов прямо на рынке. Пользуюсь этим прибором уже более 4-х лет. "Полет - нормальный".

Схемотехника "бетника", в принципе, известная. Он представляет собой микросхемный стабилизатор тока с выходным регулирующим транзистором, коллекторный ток которого и стабилизируется. Его h 21e измеряется по току, поступающему в базу транзистора стрелочным измерительным прибором PA1, включенным в диагональ диодного моста, что исключает необходимость коммутации при испытании транзисторов разной структуры. Дополнительный умощняющий каскад на транзисторах VT1-VT2 нужен чтобы не перегружать выход ОУ при тестировании транзисторов с малыми значениями h 21e при большом коллекторном токе. На схеме не показана кнопка, кратковременно подающая питание на всю схему, что позволяет экономить автономные источники питания и защищает измерительный прибор при проверке пробитых транзисторов, при неправильном их подключении или при неправильном выборе проводимости. Двухцветный светодиод VD1 индицирует, кроме наличия питания, и полярность тестируемого транзистора (красный - n-p-n, зеленый - p-n-p).

Измерения проводятся при коллекторном токе 50 и 500 мА, выбираемых переключателем SA3. Измерения h 21e проводятся в трех диапазонах, выбираемых переключателем SA2 с минимальными значениями 10, 30 и 100. Относительным недостатком является обратная и существенно неравномерная шкала измерительного прибора:

Опорное напряжение для стабилизатора тока задается стабилитронами VD2-VD3, включенными встречно-последовательно. Их следует подобрать по одинаковому напряжению стабилизации. В принципе, оптимальным вариантом было бы использование двуханодного термокомпенсированного стабилитрона, но мне они на напряжение стабилизации менее 6,2 В как-то не попадались, а опорное напряжение желательно бы делать поменьше - тогда на испытуемом транзисторе падает большая часть напряжения питания, что тоже важно для правильного измерения (например, h 21e у КТ8101/8102 существенно падает при коллекторном напряжении мене 5 В). Переключение полярности напряжения, поступающего на формирователь опорного напряжения и испытуемый транзистор разных типов производится переключателем SA1.

Номинал эмиттерного резистора R11, задающего коллекторный ток 50 мА, приходится подбирать в зависимости от полученного опорного напряжения:

При этом измерительный мост просто перемыкается накоротко. Номинал эмиттерного резистора R10, подключаемого параллельно R11 для задания тока 500 мА должен быть в 9 раз меньше, чем у R11.

Номиналы резисторов измерительной части рассчитаны для головки на ток 100 мкА сопротивлением 550 Ом. Для других головок их придется пересчитать.

Настройка производится при отключенном от генератора тока диодном мосте. При невозможности точного подбора номиналов низкоомных резисторов ставится ближайшего большего номинала, параллельно которому - более высокоомный, чтобы получить нужное сопротивление.

Питается он от любого сетевого адаптера на напряжение 12…15 В и ток до 500 мА, либо от комплекта батарей на то же напряжение. В оригинальном варианте сетевой трансформатор с выпрямителем и фильтрующим конденсатором встроен прямо в корпус прибора.

Алексей (Киев, Украина) ( )